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The integral-transform method is used to solve the linearized two- and three- 
dimensional problems of the wave motions produced by the flow of a density- 
stratified liquid past a submerged source and sink Of equal intensity. 

The method of [i, 2] can be used to study the problem of wave flows caused by a source 
and sink of equal intensity m submerged below a free surface in the uniform flow of a 
heavy liquid of infinite depth. The liquid is assumed to be nonviscous and incompressible 
and to be stratified exponentially in density. The x and z axes lie in the unperturbed 
free surface and are chosen so that the direction of the liquid velocity vector well up- 
stream coincides with the x axis, and the y axis is directed vertically upwards. In the 
unperturbed state the density of the liquid varies with depth in a known way: 

Po = Po (9  oxp (-- y / L), y - ~  0 (1) 

We consider the two-dimensional (source and sink are linear and parallel to the z axis), 
and the three-dimensional cases (point source and sink). 

The straight-line segment joining the source 
lies at a depth h below the free surface, and has 
the center of this segment. 

It is well known (see, for example, [3]) that 
past such a source--sink combination is equivalent 

and sink is parallel to the x axis, 
a length 2a. The y axis passes through 

the unbounded flow of a uniform liquid 
to flow past a closed symmetric oval in 

the two-dimensional case and an axially symmetric oval in the three-dimensional case. We 
assume that to a first approximation this result also holds for our problem, providing 
that the depth h is sufficiently great and that the stratification is weak. 

If we are given the maximum half-width of the body R, its elongation d, and the main 
flow velocity U, we can find the values of ~ = a/R in the two cases by solving the equa- 
tions 

~ 2 + ~ / a r e t g ~  = d  2, m = ~  U R / a r c t g  

(d 2 _ ~ 2 ) ~  = d V a ~ +  i ,  m = ~ U R  2 V ~ +  t / a  

The p r o b l e m  i s  a s t a t i o n a r y  o n e ,  b u t  f o r  t h e  r e a s o n s  g i v e n  i n  [1]  i t  i s  n e c e s s a r y  t o  
t r e a t  i t  a s  n o n s t a t i o n a r y  a n d  t o  u s e  i n i t i a l  c o n d i t i o n s .  I t  i s  t h e r e f o r e  a s s u m e d  t h a t  t h e  
s o u r c e  and  s i n k  b e g i n  t o  a c t  s i m u l t a n e o u s l y  a t  t = 0 a n d  t h a t  t h e i r  i n t e n s i t y  r e m a i n s  c o n -  
s t a n t  f o r  t > 0.  The s o l u t i o n  o f  t h i s  n o n s t a t i o n a r y  p r o b l e m  g o e s  o v e r  t o  t h e  s o l u t i o n  o f  
t h e  o r i g i n a l  s t a t i o n a r y  p r o b l e m  i n  t h e  l i m i t  t -~ ~ .  T h e r e  i s  a s  y e t  no r i g o r o u s  m a t h e m a t i -  
c a l  p r o o f  o f  t h i s  f a c t  f o r  t h e  p r e s e n t  p r o b l e m ,  a n d  t h e  s t a t e m e n t  i s  made  h e r e  f r o m  p h y s i -  
c a l  c o n s i d e r a t i o n s .  

The e q u a t i o n s  o f  m o t i o n  f o r  a s p a t i a l  ( t h r e e - d i m e n s i o n a l )  f l o w  a r e  

o .  / 0x + / 0y + 0w / 0z = (t) re (x + - 8 (x - a)] 8 @ a (z) 
'du " i d ) i  d r  i Op 
d--F = p Ox ' d"Y = p Oy g (2) 

dw i Op dp O, d O ~ _  0 0 
d--V= p O~ ' d--Y= -~  : at + ~ o ~ . +  v ~ + w o--F 
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Here u, v, w, are the components of the velocity vector in the direction of the x, y, 

and z axes, respectively, 0 is the density, p is the pressure, g is the acceleration due 
to gravity, 6 is the Dirac delta function, and H(t) is the Heaviside function 

At the free surface 

It is assumed that 

o , , < o  
H ( t )  = 1, t > O  

F o(x,  y, z, t) = y - - ~ l o ( X ,  z, t) = 0  
dFo I dt = O, dp ! dt = 0 

(3) 

u - + U ,  v - + O ,  w - + O ,  9 4 9 0 ,  P - +  Po, x~ + g~ + z~-+ ~176 
Y 

"Po = " g I Po (Y) dy 
0 

The initial conditions are 

u = U ,  v = 0 ,  w = 0 ,  p =P o ,  P = P o ,  t ~ O  

and the time derivatives o-f u, v, w, 0, and p are also equal to zero. 

Putting 

U = U .-~ /~1, p .~- Vl, //7 = Wl ,  p = Po (Y) -@ P l ,  P = Po (Y) + Px 

(4) 

and assuming that the perturbations caused by the singularities are small, we can linearize 
(2) and (3) and reduce them to a single equation for the function v, 

1 ( 0~ any ~ D 2 0 v ]  
D2Av + -E" [g + - -  = mD2H (t) • ~ Ox 2 Oz 2 I OyJ 

• (x + 8 (x - -[6" + h) - + h)J -F  6(.Y (5) 

w i t h  t h e  b o u n d a r y  c o n d i t i o n  

D~ Ov a~v +--~-~ ) = o ,  y = o  

Oe (6) D---- -O + u  0 A - -  o3 O~ 
- -  a t  �9 o~, ' = - - ~ ' .  + ~ + o ~  

On an equal-density surface defined by the function 

f ( x , v , z , t )  = v - -  ~ (z ,  z, t) = o  

which consists of particles of density 9o(Y), and in the absence of singularities repre- 
sents the plane y = y, we have the condition 

dF / dt = 0 ,  F (x, g, z, t) ----0 
which after linearization becomes 

Dvl =.v t  Y = .q (7)  
The above equations and transformations are also valid for plane (two-dimensional) 

flow if we put w = 0 on the right sides of (2) and (5), remove the factor 6(z), and re- 
member that all functions are independent of z. It is also assumed that the required 
functions in the boundary condition (4) are bounded as x § ~. 

We introduce the dimensionless variables 

t (x, g, z, h, ~l, a), v. = v/U, t = Ut /L  (x.,y.,z.,h.,~l.,a.) -----Z- (8) 

where Q, = m/UL 2 in the three-dimensional case, and Q, = m/UL in the two-dimensional case. 
In these variables (5) and (6) become (we drop the asterisk subscript) 

• [ 8 (x + a) - -  8 (x --  a)l 8 (z) 16' (Y + h) --  8 (y + h)] 

~-x + =0, y =0 Ox~ Oz~ I " 
X = g L I U  2, I ~ = - - O / O x + O / O t  
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Using the Fourier and Laplace transformations 

/ (~, y, v, s) = ~ e-4~dx e-~,zv (x, y, z, t) dz 

for real U, ~ and Res > 0 (for the plane case there is no Fourier transformation over z) 
and introducing the function 

l =Q(Olah--t)~ 
we obtain the normal differential equation 

G"-- G'  -- ~' -- M) g = 

With the boundary conditions 

The solution of (I0) is 

{sxp(--ly + h i M )  

2i sin (t~a) ~ (~ + h) 
$ 

G' --~G =0, y=O; G-+0, y-~ -- oo 

i 
G = -- ~ sin (~a) exp [(y + h)121 

r , ~ -  ~,, eXp [(y -- } "h,s h)  M]  --- */, =e M ,  M ~ (k '  -- ~'I + V d  'I' 

The function M has four branch points (kl, k=, k~, k~) in the complex k plane. 
small positive s 

" l . k s  i s  

kl,S : ! b + b' sin'0 + O (~), ks'a = sin 0 H- 2 Y~- + O (S ~) 

�9 b = ~f~ /s in  ~ % - -  * l , ,  ~ = k sin 8, v = k cos 0 

(9) 

( i0) 

(Ii) 

(12) 

For 

(13) 

We note that for conditions corresponding ~o the real ocean it is only values % > i 
which are of practical interest. The cuts between the branch points are made as follows: 
between k~ and k2 in the upper half-plane and along the imaginary axis from k3 upwards and 
from k~ downwards. 

Knowing G, we can find from (7) and (9) the function ~ -- the Fourier and Laplace 
image for the function ~, 

iQ sin ,~a) { [ + q i  mz--Xl exp [(~ _ h) M]} (14) ~ =  sM(s+i~) exp[ (y  + h ) / 2 ]  e~p(-- lY+hl M) M s i g n ( ~ + h ) ]  - - m ,  m~--X-----T 

I n  a d d i t i o n  t o  t h e  f o u r  b r a n c h  p o i n t s  o f  M, t h e  f u n c t i o n  ~ h a s  f o r  X > ~/= t h e  two 
simple poles 

hi, , = _ X ] s i n  z O + 2 ~ s i s i n % q - O ( s  ~) (15)  

I n  t h e  t w o - d i m e n s i o n a l  c a s e  i t  i s  n e c e s s a r y  t o  p u t  ~ = O, and  0 = z / 2  i n  ( 1 0 ) - ( 1 5 ) .  

I t  i s  d i f f i c u l t  t o  p r o c e e d  w i t h  t h e  a n a l y s i s  f o r  b o t h  c a s e s  a t  o n c e  a n d  s o  we f i r s t  
c o n s i d e r  t h e  p l a n e  c a s e  ( w h i c h  i s  s i m p l e r ) .  

Applyin~ the inverse Fourier transformation and the limiting theorem for the Laplace 

transform we obtain 

I Re~ ei~Xlims~d~t (16) ~l (x) = e~  ~ l ims~d~ = -~ ~ s-*o+ 
$-*0+ 

- - o o  0 

The last equation here fo!icws from the symmetry of the branch points and the posi' 
tion of the poles of the function ~ relative to the imaginary axis and also from the fact 
that ~(~)I, s) is the complex conjugate of ~(U, s) for real positive s, 

Before writing out the final expression for q(x) we transform to the dimensionless 
variables 

I R h 
( X ,  Y ,  ~ )  = --~ (• ~, ~), q = m / U R ,  e = - - ~ ,  H = - -  

�9 ~ (t7) 
A = g R / U  z, ~ = ~ e h - - e  ~ / 4  
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Here x, y, q, h are the original dimensioned variables. Carrying out the integration 
in (16] (the contour is similar to that in [i, 4]), using the residue theorem and the Jor- 
dan lemma, we obtain 

=~lq-'~+~3, X ~ 0  
~ = ~ ,  X < 0 (18) 

Here 

~l(X,Y)=--4" fs in(AX)  ( A - - + ) e x p [ A ( Y - - H ) +  He] 
sin (A~) 

2"=q  ..... A 

is the residue at point ~ = h; this term describes waves with a period 2~/h caused by the 
presence of the free surface. The term 

r12 (X, Y) ---- ~ Im e-~lxlz (!~, B, Y) dk 
o (19) 

= B = i y k - v - 4 - - e  

arises from the integration along the imaginary axis, is an even function of X, and is most 
important in the neighborhood of the singularities. Finally, the term 

~a(X, Y) =- 2 f --~Im sin(~X)Z(p,B,Y)dp, B = ~ V ~ - - ~ t  2 (20) 
0 

which  a r i s e s  from i n t e g r a t i o n  a l o n g  the  cu t  on t h e  r e a l  a x i s  ~, d e s c r i b e s  i n t e r n a l  waves 
caused  by t h e  p r e s e n c e  o f  t h e  e x p o n e n t i a l  s t r a t i f i c a t i o n  (~3 = 0 when e = 0 ) .  Here 

Z(~, B, Y) = ~ sin (~a) exp [(Y + H) e/2] • 

{exp (-- ] Y + HI B ) [ + +  B sign (Y + H)]- -  x 

_ (e/2 § B) (e/2-- B -- A) exp [(Y -- H) B] ] 
e/2 + B -- A f 

From the  c o n t i n u i t y  e q u a t i o n  we can o b t a i n  t h e  p e r t u r b a t i o n  in  l o n g i t u d i n a l  v e l o c i t y  

. u , / U  = ~ - ~  ~ +  ~3, X ~ O  (21) 
ul / U -= ~, X ~ O 

Here 

(x, ~3 = -  An, (X, Y) 

and t h e  f u n c t i o n s  ~2(X, Y) and ~3(X, Y) a r e  ana logous  to (19) and (20) w i t h  the  k e r n e l  

- -  q. sin (pa) ( .-~- + B) exp [(Y-k H)~Ii] • 

We have investigated the cases d = i, 5, and i0 and we give in Table i the correspond- 
ing values of e, q, and y (the values of Y are given for A = 0.5). For d ~ 1 we have flow 

past a circle of radius R, and the source and sink form a dipole (the solution for a dipole 
in the stream of a stratified liquid was derived in [4]). 

It has been pointed out in [4] that surface waves are only important at comparatively 
small submersions, and it can be seen from Table i that the amplitude of these waves increas- 
es only very slightly with the elongation of the body. In order to study the behavior of 
the internal waves we have carried out a numerical integration of (18) and (21) on a computer 
by the Simpson method for A = 0.5, H = 20, e = 5.10 -4 (with these values of h and H the waves 
caused by the presence of the free surface are negligibly small). In Figs. I and 2, curves 
1-4 correspond to d = i0 and Y = O, --16, --160, --576 and curves 5 and 6, to Y = --576 and d = 
I, 5. It is interesting to note that although the shape of the free surface changes little 
in thepresence of internal waves, the perturbations in the horizontal velocity on the free 
surface are maximal. The internal waves are attenuated very slowly with depth in the two- 
dimensional case. An increase in the elongation at constant R produces an almost proportion- 
al increase in internal-wave amplitude but hardly affects the phase pattern. 
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TABLE 1 
(i4) 

d ct q "r 

t 
5 

t0 
4~5 2~1 3.38 
9.6~ : 2 ."  --~.25 

Making the change 

is 

gate of ~(U, 

of variables 

and taking the 

~) (~, o) = 

We now turn to the three-dimensional problem. Going back to 
and applying the inverse Fourier transformations and the limit- 

theorem for the Laplace transform we obtain 

G,(x, z) = ~ e~d~ e~zdv~lim s~ = ~-IRe ei~xd~ cos~zdv lim s~ 
. $~0+ S-§ 

- - ~  - - ~  0 0 

The last equation here follows from the fact that the integrand 
an even function of ~ and that ~(--~, v, s) is the complex conju- 

v, s) for real positive s. 

,it - - k s i n O ,  ~ = k c o s O  

x --=rcos % z. = r s i n  r 

limit, we obtain 

~1~ ~o 
lqCr, q)) _~. --r~ ~ "  Q eY-p[CY+h)]2] 1{0 l d O  I (I)(k,. O)[eth'rain(0+(o) + e~r~'n(o-*)] c l k  

o o 

sin (ak sin ~) (~h + B) (V~--  B - -  ~). exp [(~ - -  h) B ] }  
B ~i ~ 0 { e X P ( - - l ~ + h l U ) [ +  + B s i g ~ ( ~ + h )  ] -- ] ] , + B I ~  I 

(22) 

(23) 

B = (k 2 . -  ~ + 1/~)'/,, ~. ----- ~ / s i n  2 0 

The 
first or 
(Table 2). 

We thus 

contour of integration is similar to that in the plane case and is chosen in the 
fourth quadrants of the kplane depending on the sign of sin (0 +~) or sin (0 -- ~) 

obtain the 

q(r,  q ~ ) : - ~ Q  exp [(~ + h ) / 2 ] {  I J1s in(~r  sin(O + qo))dO-p 
0 

=,'2 =12 " oo . 

-4- i J1 sin (~r sin (0 - -  T))dO -~- I dO i y~ [e-~r sf, (o+r + e-er sin JO"Vl] dk -p 
o o 

=/g b =/2 b 

"{" S dOSJ3sin(krsin(O+q)))dk q- S dOS Jasin(krsin(O-cp))dk} O~<(p~<g/2 ( x > O )  
0 0 ~ 0 

V 

Q ~x- {i:l~n(~r~i~(o ~))ao- T 1 (r, r = - -  i ~  v [(Y + h)/21 
0 

=/2 =o 

- I ao i ~' [~-~" ~*~ jo-,, + e-~ ~,a(o+,)l dk + 
0 o 

b 

+ IaoIJ.~m(~rsm(o-~))ak}, ~/2<r (x<o), r = - - r  
0 0 

following integral representations for the equal-density surfaces: 

(24) 

Here 
2~ J1 = ~ sin (a~sin O) (l - -  2 ~  exp [(y - -  h) (~'-- !i,,)1 

sh ( a k  sin O) { i 
J 2 =  ]siaO -~ -sin(ly + h l / ) - / s ign(y  + h)c~ Th)]]'4" 

+ sm[(~--h)fl (k2 4Ek~_aZ2+~)+/(~ k2_~) cos[(~--h) f l }  

sin (ak sin O) {cOS [(~" dra =: ---  n sin 0 - -~- h) n] q- 2n sin [(y -{- h) n] - -  

_ _ . =.  + 2n(~2 ~-_{_k 2) s ia[(y--h)n]  

(25) 

800 



0.1 

I 
Fig. i 

Fig. 2 

, , , - - 1  o - q  

IX'IO-Z I 
] 

e-f 1 o-# I ~-7 v - 5  

__~ - 3  n-5_~  
I 

, I 
X" 7"R -:7 

TABLE 2 

0 <,# < ~/2 ~/.?., < ~, < :~ 

Quadrant 

eikr sin (O+~) 
ei~r sin(0+e) 

'I ,v 0 < 0 < ~ : ~ 1 2  - 
~<0<~121 0 < 0 < ~  

I I iv 
-- I o<o<~/2 

The single integrals with J1 describe the waves caused by the presence of a free sur- 
face; these waves have been studied for a dipole in a uniform liquid in [5]. The double inte- 
grals with J2 are even functions of x and decrease rapidly with increase in r. They describe 
local effects in the neighborhood of the singularities. The double integrals with J3 repre- 
sent the internal waves caused by the presence of the density stratification. 

The numerical evaluation of the integrals in (24) requires large amounts of computer 
time and so we have only made a few calculations; in particular, for gh/U 2 = 5 we have de- 
termined the shape of the free surface for a flow past a dipole of a uniform liquid and a 
stratified liquid with h/L = 5-10 -3 . The results for the two cases agree to within the nu- 
merical error (the relative accuracy of the numerical integration was 0.01), and the picture 
obtained is the usual wake structure. Thus, as in the two-dimensional case, the presence of 
weak stratification has very little effect on the shape of the free surface (see also [2, 6]). 

The problem can be greatly simplified if we limit the study to a deeply submerged body 
and weak stratification. 
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In contrast to (i), we take the variation of density with depth to be 

00(~ =P0(--~exp[--(Y+~/L] 

Since the preliminary calculations for the full problem (24) have shown that the terms 
describing the internal waves have practically no effect on the shape of the free surface, 
~e can see f~om (25) that ~or sufficiently deep s~Dmersion the terms characterizing the 
surface waves will also be sma11, and so the free surface can be replaced by a rigid wall. 

Repeating the above analysis in the dimensionless variables (8) we find that the solu- 
tion of (i0) with the boundary conditions (we omit the asterisk subscript) 

is 

y = 0  
G=O y - + - -  oG 

G ~ s ~  sin (~a).e(Uch)l 2 [e(u-a) M _ e-tU+hlM] 

Thus 

~Q 
sin (ha) e(~+~)/,{[+ q- M s i g n  (~7 + h)] e-IY+~IM @ m,er 

and in (23)  

I~ the expression for n(r, ~) we retain only the terms which describe the ins waves, 

since they are of most interest here: 

nl~ o 

0 0 

+ S dOSJs in (k r s in (O~ ' ) )dk} '  x>/O 
cp Q 

0 D 

sin (ak sin O) { +  
J =  l s-Tff-- 6 cos [(g + h)/]  + / s i n [ ( g + h ) / l  

I co~ [(Y - -  h) / l  "-5 / sin [(~ - -  h) 11} I = V-bT"~-- k ' 2 

(26)  

We make the change of variobles y' = y + h and assume that the depth of submersion 

tends to infinity, so that in(Z6) 

t ' / s i n / y ' )  sin (ak sin 8) (-~-COS/y -~- 
"]" ~ f s in  O 

(27) 

We now transform from the dimensionless variables (8) to new dimensionless variables 

[see (17)] in terms of R: 

y, = (~ + h) / R, ~ = r / R, q = m / u R  ~, gR ~ / U2L = S, 
e = R / L (28) 

Here y, h, r = x/cos ~ are the eriBinal dimensioned variables, and the parameter S is 
inversely proportional to the Froude number. The integral expressions (26) now become [with 

allowance for (27)] 
�9 =IZ b = t2  b 

_.~ ~_ ~q e~Ya/2{S dOSJsin(krlsin(O-~-T))dk -~- S dOSdsin(krxsin(O--~)) dk}, x>~ O 
0 0 �9 0 

802 



. 

Fig. 3 

P ' , t / J 

-2 / j ~ / 

Fig. 4 

=- --~ e~ur 2 dO J sin (krl sin (T --  0)) dk, x ~ 0 
0 0 

] =  sin (ak sin O ) [ e  y,-)] 
n sin 0 -~- cos (rig1) q- n sin (~ 

n = ~ " k ~, ~ __i ~fS/s in  ~ 0 --  s~/a 

o f  
For S >> si, which corresponds to gL/U 2 >> ! -- a condition which is satisfied 

practical interest -- we can put 

~ ] / ~ l  sin O, J ~-~ - -  sin (a k sin O) sin (W s / sin ~ 0 - k2gt) ] sin 0 

Then in the variables 

we obtain the universal expressions 

exp (--  sY /2  }/-S) = w (P,  ~,  Y) - n s  g~-r~-~+ ~ 

i {" sin t 
=-~-{S d e s  J s i n  - , ~  Psin(e-.i-<p))dt-b. 

0 0 

_~_ S d O S ' - ; .  / s i n t  ,., . 
O 

=/~ 

\ si--E-e- sin (~ - -  O) ) dr, x < O' 
0 0 

. 7 =  ~si~at sin ~ si-i~-[ cost y )  

in cases 

(29) 

803 



~n 

X 

TABLE 3 

5 t 4.49 I 4.60 lO 9.50 9.55 

1.2 2. q . 3.G 

Fig. 5 

in which the right sides do not depend explic- 
itly on S. In the derivation of (29) we used 
the approximation 

sin (=]/'S sin t) ~ ~ g S  sin t 

which is valid for small values of ~/S. 

A comparison of the solution for the full 
problem (24) without allowance for the terms 
which describe the local effects (open symbols) 
and for the simplified model (29) (dark sym- 
bols) is Shown in Fig. 3 for a dipole with gR/ 
U 2 = 0.5, h/R = 20, ~ = 5-10 -~, ~ = 0, y/R = 

--8 (curves i, 4), --32 (curves 2, 5), and --56 
(curves 3, 6). The phase patterns are identi- 
cal for the two solutions, but the amplitudes 
differ slightly, especially for small x. It 
is interesting to note that the thickness of 
the layer over which the internal waves are 
developed is much greater in the three-dimen- 
sional case. 

Figure 4 shows the function W(P, ~, Y) 
for Y = 0.i; for x > 0 curves 1-5 correspond 
to [~ = 0, 0.5, i, and 3.5 ~ and for x < 0 

curves 6, 7 correspond to y = 3 and 5 ~ . It 
can be seen that for x > 0 the function W is 
nonzero only in a small neighborhood of ~ = 0. 
The effect of the body is also felt upstream, 
though to a much smaller extent (Fig. 4 does 
not show the x < 0 curves for which the maxi- 
mum absolute value is less than 5% of the cor- 
responding value for x > 0). The minimum value 
of Y in our calculations was 0.005. For ~ = 0 
the function W oscillates with P; the amplitude 
is proportional to I//P, and the wavelength is 
equal to about 2~. In dimensioned variables 

this correspondsto 2~u/LTg, which is usually 
very large in comparison with the wavelength 

of surface waves. 

A rather similar conclusion was reached 
in [7] which dealt with internal waves caused 
by a moving source in a stratified liquid. 
However, the statement that the wake possessed 
axial symmetry is not confirmed by our result. 

It is interesting to note that the numeri- 
cal calculations indicate that to the accuracy 
employed the function W obeys the relationship 

w (P, ~ , .  ~r) = ~-~w (p, ~, Y) (3o) 

where ~ is an arbitrary positive constant. By 
making use of (30) we can construct, even with 
a limited amount of data on W, a picture of the 
wake development in the transverse plane x = 
const behind the body. Using (30) and the 
fact that the wake develops in the region of 
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small ~ values, we find that for x = const 

W(~Z, ~Y) =~-~ W(Z, Y), Z = P s i n  

and it thus automatically follows that in the plane x = eonst the phase fronts are radial 
straight lines passing through the point Y = 0, Z = 0. Figure 5 shows the results for all 
the values of X = P cos ~ studied and also depicts the isolines of the function W~ = WY. 
The dashed curves were drawn from the relationship 

Z / Y  = V ( X / ~ n ) ~ - i  
obtained from [8] for the positions of the crests and troughs in the wave field produced 
from a point perturbation source in a two-dimensional problem for a linearly stratified 
liquid (n = i for the first trough, n = 2 for the first crest, and so on). 

An increase in the elongation of the body, as in the plane case~roduces an increase 
in the amplitude of the internal waves which is proportional to ~ + i, approximately equal 
to the elongation (Table 3). 

The author is grateful to Yu. M. Lytkina for valuable discussions. 
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